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We compute the energy levels of an SU (2) Yang-Mills field in perturbation theory to order g2, for a box of finite size and 
symmetric twist m = ( 1, 1, 1 ). A cubic-invariant spectrum results, with almost degenerate E + + and T + + levels. Various sugges- 
tmns for further MC measurements are made. 

1. Introduction 

One of  the more fundamental  problems of  strong 
interaction physics concerns the existence and prop- 
erties of  glueball particles. Since the experimental sit- 
uation is by no means clear, this offers a unique op- 
portunity for QCD to yield predictions rather than 
postdictions. Indeed, even qualitative or rough quan- 
titative results would be a serious evidence in favour 
of  QCD and of  our understanding of  non-perturba- 
tive phenomena. Lattice QCD can show in this do- 
main all its strength and its present-day weaknesses 
(if  any).  In principle the problem one has to face is 
to be able to control the approximations made: finite 
lattice spacing, finite volume, effect of  dynamical 
quarks, lack of  statistics. For this purpose, analytical 
results which help us to understand the effect of  these 
approximations can be very useful. It is in this con- 
text that the present paper has to be inscribed. 

An essential limitation o f  the numerical results ob- 
tained from lattice Yang-Mills theory is the finite- 
ness of  the volume. This limitation may turn out to 
be also a physically interesting fact because it enables 
us to probe the dynamics of  Yang-Mills fields in do- 
mains not accessible by experiment, but which may 
turn out to be useful in the context of  Kaluza-Klein 
theories. All in all it would allow us to understand 
better the non-perturbative dynamics o f  Yang-Mills 

fields. The presence of  a finite space with the topol- 
ogy of  the torus also allows to introduce a wide class 
of  periodic boundary conditions, called twisted 
boundary  conditions [ 1 ]. They can be interpreted as 
the possibility o f  confining within space a certain sort 
of  magnetic flux m which is abelian and conserved. 
For large enough volumes of  space the effect of  the 
boundary conditions should vanish, so that the 
boundary conditions can be used as an economical 
method to check volume independence. For small 
volumes the dynamics can be very much dependent 
on the value o f  the magnetic flux: results on the large 
N limit [2] and perturbative computat ions on the 
lattice [ 3 ] show this to be the case. Indeed, they even 
show that the presence o f  magnetic flux may give rise 
to a smoother dependence on the volume [4].  The 
results of  this paper also go in this direction and we 
look forward to Monte Carlo results on the lattice us- 
ing different twists [ 5 ]. 

In this paper, we will compute the energy spectrum 
for SU(2)  Yang-Mills theory in a box with twist 
m = ( 1, 1, 1 ). Our computat ion is done in perturba- 
tion theory, which is a good approximation for small 
volumes, as follows from asymptotic freedom. It was 
Liischer [6] who initiated these type o f  computa- 
tions with his study of  the case m =  (0, 0, 0). The nu- 
merical results were presented in ref. [7].  Later on, 
Koller and van Baal [ 8 ] pushed the domain of  ana- 
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lytical results up to intermediate volumes. The main 
features of the perturbative computations with 
twisted boundary conditions were given in ref. [ 9 ], 
where the reader is referred to for a more extensive 
discussion of the formalism. Here, we concentrate on 
the particular case m =  ( 1, 1, 1 ), which is particularly 
interesting since it does not break cubic symmetry. 
We put particular emphasis on identifying the quan- 
tum numbers of the states. Our goal is to show clearly 
the different results obtained, compared with those 
of purely periodic boundary conditions (m = (0, 0, 
0) ). Ultimately we hope our results will serve to guide 
and encourage numerical results with these boundary 
conditions. 

To conclude we give a few guidelines for the reader. 
First, we comment on the fact that, given the nature 
of this paper, we avoided giving reference to the work 
on extracting glueball masses from lattice QCD. We 
refer the readers to the references contained in the 
review talks given by Berg and Kronfeld and van Baal 
at the lattice conferences of Seillac and Fermilab 
[10]. Second, we refer the non-technical reader to 
sections 4 and 5 of this paper, where the results are 
summarised and the conclusions given. The essential 
features of the calculation are reported in sections 2 
and 3. 

2. General framework 

We consider SU(2 ) Yang-Mills on a spatial hyper- 
torus (box with periodic boundary conditions) of size 
L 3. If  we formulate the problem in th'e Ao = 0 gauge, 
the dynamic variables are the vector potentials 
A~,(x), where i= 1, 2, 3 labels the space direction and 
a = 1, 2, 3 is the colour index in the adjoint represen- 
tation. The canonically conjugate variables are the 
electric field operators E~ (x): 

[E,~(x), A~(y) ] =i-'fiufiabfi C3) ( x - y ) .  (2.1) 

We are interested in the eigenstates of the hamiltonian 

where B~'(x) - l a - -  2 ~-lJk ( OjA k a abc b c - -  O k A j  " [ - g f  " A j A k )  is the 
magnetic field operator. The whole problem is invar- 
iant under gauge transformations depending on the 

point of space. The infinitesimal generator of such 
transformations is ~b.,D~bEb~(X) -- (DE). We are in- 
terested only is those eigenstates of the hamiltonian 
which are at the same time eigenstates of zero eigen- 
value of (DE). The latter states are called physical 
and the restriction to them is a consequence of Gauss' 
law. 

The previous formulae are valid both for infinite 
space as on a hypertorus. The finiteness and period- 
icity implies the following boundary conditions for 
the operator At = ZaAaTa: 

A,(x+Lij )  = r A,(x)U, 
E,(x+Lij)  = FjE , (x)F] ,  (2.3) 

where T a are the generators of SU(2) in the spin ½ 
representation and Fj are 2 × 2 unitary matrices. In 
addition, the matrices F satisfy 

F, Fj =exp(rci~ukmk)FjF,, (2.4) 

where the integer vector m (defined mod 2) is called 
topologically conserved magnetic flux [ 1 ]. The form 
of the Fj matrices is physically irrelevant, only the 
value of m plays a role. When m = 0 one can choose 
F j = I  and ones speaks of purely periodic boundary 
conditions. When m ¢ 0 one speaks of twisted bound- 
ary conditions [ 1 ]. The diagonalization of the ham- 
iltonian depends strongly on the value of the mag- 
netic flux m. For the purely periodic case and SU (2) 
see refs. [6,7]. The twisted case has been studied in 
ref. [ 9 ], to which we refer the reader for a more ex- 
tensive discussion of the formalism. Here we will 
concentrate on m = ( 1, 1, 1 ) which is a particularly 
interesting case as we will see. 

In addition to gauge transformations generated by 
DE, there is another internal symmetry group iso- 
morphic to (Z2)3. The representations of this group 
are labelled by an integer vector (defined mod 2) 
called electric flux e. The group can be considered as 
being that of singular or non-periodic gauge transfor- 
mations. The reader is referred to ref. [ 9 ] for a more 
extensive discussion. The main point is that we may 
consider the diagonalization of the hamiltonian sep- 
arately in every electric flux sector. We will be inter- 
ested only in the e = 0 sector, but we will dedicate a 
few words to the other sectors. 

The eight values of electric flux are arranged into 
four groups of two elements labelled by an index a = 0, 
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1, 2, 3. For each group the possible values of  electric 
flux are i~ and m-i,~, where it, i2, i3 are the unit vec- 
tors along each direction and io = m. Different results 
are obtained in perturbat ion theory for each of  the 
four groups, but separation between the two electric 
fluxes of  each group only occurs by non-perturbat ive 
effects. 

To compute  the energy levels o f  the hamil tonian 
we make use of  perturbat ion theory (PT) .  For small 
box size L we expect PT to be a good approximat ion 
as a consequence of  asymptot ic  freedom. The proce- 
dure to follow is explained in ref. [ 9 ]. First, we write 
the vector potentials in m o m e n t u m  space. It is pos- 
sible to diagonalise the boundary conditions (2.3) by 
choosing an appropriate  basis of  the Lie algebra of  
SU (2).  The three generators T (Pc) are labelled by a 
vector called colour m o m e n t u m  

pc~{nL-l(O, 1, - 1 ) ,  n L - l ( 1 ,  0, - 1 ) ,  

nL-~(1, - 1 , 0 ) } .  (2.5) 

The usefulness of  this basis is that  now the boundary  
conditions and the periodicity imply that the possi- 
ble values of  m o m e n t u m  appearing in the Fourier  ex- 
pansion of  the vector  potentials are 

p=p¢ + 2nL - In, (2.6) 

where n is an integer vector. Notice t h a t p =  (0, 0, 0) 
is not appearing in (2.6).  

I f  we write the hamil tonian to lowest order in per- 
turbation theory, we get 

Ilfree----- ~ IPla+(pc,p, a)a(pc,p, a ) ,  (2.7) 
p c , n , ~  

where p is given by (2.6),  a =  1, 2 distinguishes the 
two transverse polarizations and a t ( a )  the creation 
(annihi lat ion) operators. This means that  we have 
free gluons characterised by the colour index Pc and 
polarization index a and with m o m e n t u m  restricted 
by the boundary  conditions. It turns out that  a gluon 
with colour index Pc carries also electric flux. The 
three values appearing in Pc correspond to e =  {it, i2, 
i3 } or to { m -  i l, m -  i2, m -  i3} since the electric fluxes 
e and m - e  are degenerate to all orders of  perturba- 
t ion theory. 

From (2.7) we can trivially deduce the spectrum 
of the hamil tonian to this order. The ground state is 
the Fock vacuum which as all the other states is du- 

plicated according to whether the electric flux is e = 0 
or e=m. From now on we will omit  any reference to 
the two-fold degeneracy of  states and only refer to 
e =  ( m -  i~). The first excited states are the one-gluon 
states with m i n i m u m  momentum.  There are alto- 
gether 24 such states, half  of  which are indicated in 
table 1. The other half  is obtained by changing the 
sign o f p  and is labelled by the same symbol with a 
bar  on top, [ ) .  The energy of  all those states is E =  
nL - lx/~. Then, there are other one-gluon states with 
energy E= nL- t x /~ ,  and so on. The energies and 
quantum numbers  of  n-gluon states can be easily ob- 
tained f rom those of  the one gluon using the additiv- 
ity of  energies, m o m e n t a  and electric fluxes (mod  2 ). 
In the e = 0  sector, the sum of  all the colour momen ta  
pc has to be zero (mod  2nL-~n) .  I f  we consider the 
sector with p = 0  and e = 0 ,  the first excited states 
above the Fock vacuum is the set o f  two-gluon states 
obtained by combining a state of  table 1 with one 
having the opposite momentum:  

IA; a ) ®  IA; a '  ) - -  IA; a, a ' ) ,  (2.8) 

where A~{x, x', y, y', z, z' ). There are altogether 24 
such states, all degenerate with energy 

Eo --- 2x/~gL -~ . (2.9) 

Now we come to the last point which we want to 
discuss, namely the spacetime symmetries.  The infi- 
nite volume theory has rotational invariance, but 
putting the system in a box breaks the rotation group 
to the cubic group K. One may question whether the 
presence of  magnetic flux m restricts the invariance 
to a smaller group. Indeed this is the case for many  
possible twists such as m =  (1, 0, 0) for example. 
However,  our choice m = ( 1, 1, 1 ) is interesting be- 
cause it does not break the cubic group and therefore 
the comparison with the untwisted m = 0 case is most 
relevant. The reason why the presence of  m = ( 1, 1, 
1 ) does not break the cubic group is the fact that it is 
defined m o d  2. In fact, rotation of  g /2  around the x 
axis t ransforms ( 1, 1, 1 ) into ( 1, - 1, 1 ) which is, 
however, completely equivalent to it. The reader may 
be worried by the fact that the matrices F~ ofeq.  (2.3) 
are indeed not invariant  under the cubic group. How- 
ever, this is due to a particular gauge choice (see ref. 
[9 ] ). As ment ioned previously the only physics is in 
the magnetic flux itself and this can be seen explicitly 
when writing the hamil tonian in m o m e n t u m  space. 

138 



Volume 221, number 2 PHYSICS LETTERS B 27 April 1989 

Table 1 
One particle states with energy Eo = nL - ~x/2 and colour momentum, electric flux, total momentum and polarization vectors. 0nly half 
of the possible momenta is given. The other half is obtained by changing p into -p. The corresponding polarizations are obtained by 
e I ---~61 a n d  62---~, - - 6 2 .  

State p~L/~ Electric flux p Polarization 6 

Ix; 15 (0, l, - 1 )  (1,0, 0) 7eL-l(0, l, - 1 )  (1, 0, 0) 
Ix;2) (0, l, - 1 )  (1,0, 0) zcL-l(0, 1, - 1 )  (l/x/2) (0, I, 1) 
Ix'; 15 (0, 1 , -1 )  (1, O, O) nL-l(o, 1, 1) (1,0, O) 
Ix'; 25 (0, 1, - I )  (1,0,0) ~L-'(O, 1, 1) (l/x/2) (0, 1, - 1 )  
lY; 1) (1,0, - 1 )  (0, 1,0) e L - I ( -  l, 0, 1) (0, 1,0) 
ly;2) (l,0, - l )  (0. 1.0) nL-~(-1, 0, 1) (1/V/2)(l, 0, 1) 
lY'; 15 (1,0, - 1 )  (0, 1,0) gL-'(1, 0, 1) (0, 1,0) 
ly'; 2) (1,0, - 1 )  (0, 1,0) gL-'(1, 0, l) (1/x/2)(-  I, 0 1) 
Iz; 15 (1,--1,0) (0,0, 1) n L - ' ( 1 , - 1 , 0 )  (0,0, 1) 
[z;25 (1 , -1 ,0)  (0,0, 1) zcL-t (1 , -1 ,0)  (l/x/2) (1, 1,0) 
]z'; 15 (1 , -1 ,0)  (0,0, 1) xL-~(1, 1,0) (0,0, 1) 
Iz'; 25 (l, -1 ,0 )  (0,0, 1) nL- ' ( I ,  1,0) (1/,~/2) (1 , -1 ,0)  

The colour momenta  themselves are not rotationally 
invariant but the set o f  all possible momenta  is 

According to the previous considerations we con- 
clude that it is possible to classify the 24 two-particle 
states with energy Eo = 2 x / 2  nL-t  into irreducible 
representations of  the cubic group [1 I ] .  These are 
well known: There are two one-dimensional ones (AI 
and A2 ), one two-dimensional (E) and two three-di- 
mensional (Tl and T2). The irreducible representa- 
tions of  the rotation group become reducible with re- 
spect to the cubic group. Thus, spin zero=A~, spin 
o n e = T l ,  spin t w o = T 2 ® E  and so on. In addition to 
rotations one can consider parity. Again the presence 
of  twist m = ( 1, 1, 1 ) does not destroy this symmetry. 
I f  we split up the 24 states according to these sym- 
metries we find 2 (A + ~ E + ~ T  + ) @ (T + + T + ) 
(A i -~3E-@T£) .  The decomposit ion into irreduc- 
ible representations is very helpful not only to iden- 
tify quantum numbers but also to diagonalise the 
hamiltonian to order g2 which is done in the next sec- 
tion. Since mixing can only occur within the same 
representations we only have to diagonalise the 3 × 3 
matrix o f T  + states and the 2 × 2 matrices o f  A~ and 
E + . 

3. Second order perturbation theory 

In this section we indicate how the calculation o f  
the splitting AE of  the energy level (2.9) proceeds to 

order g2. The computation is done in Coulomb gauge. 
In this gauge, the hamiltonian reads 

H =  Hfree + g  J" d3x Tr 0kAt[A~, At] 

_g2  f d3x Tr [A , ,  At] [Ak, At] 

j "t-g 2 d3x Tr[Ek,  Ak] ~ [El, All + O ( g  4) , 

(3.1) 

where //free is given in eq. (2.7). Besides the usual 
vertices, (3.1) contains the Coulomb term. 

Let the polarization vectors be defined as in table 
1. Then cubic symmetry dictates the form of  the 
24 × 24 matrix AE in the space of  two particle states 
with energy Eo as in eq. (2.9) to be o f  the following 
form: 

A E =  ,v ~, ~T ~ _~T ~ • (3.2) 

~T lyT ~V 

The first three rows and columns correspond to tran- 
sitions between two particle states [A; a, & )  with 
A =x ,  y, z and the last three rows and columns corre- 
spond to transitions withA = x ' ,  y ' ,  z'  (see eq. (2.8) ). 
The entries in this matrix are 4X 4 matrices them- 
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selves given by the four spin combinations. Due to 
time-reversal parity and cubic invariance they have 
the following properties: 

and in the basis in which parity is diagonal ( a a =  11, 
22, 1 2 - 2 1 ,  1 2 + 2 1 )  

= a3 a2 a5 

- -  a4 - -  a5 a6 

0 0 0 a7 

(i , 3o ~ =  3 092 0 
0 0)4 
0 0 0~5 

[coi co& 0 0 ) 

o4 0 0 ° 

/Oo o o " 
0 0 e,~ 

(3.3) 

Altogether we have 13 real parameters in the P =  + 1 
sector and 3 in the P =  - 1 sector. They determine re- 
spectively the 8 levels and 5 mixing angles ( P =  + 1 ) 
and 3 levels ( P =  - 1 ), where the levels are labelled 
by the irreducible representations enumerated at the 
end of  section 2. 

To order g2 the graphs are given in fig. 1. The ma- 
trix ~ '  is zero in this order, and the matrix ~ gets 
only contributions from the self-energy graphs in fig. 
lb; the matrix ,~ gets only contributions from the 
graphs la. 

We now proceed to the diagonalization of  eq. (3.2) 
by noting: 

(a)  P =  + 1 states do not mix; thus AE is split into 
an 18 X 18 matrix with P =  + 1 and a 6 X 6 matrix with 
P = - I .  

"--• / ~ 4 crossed 
(a) 

-O-+-2k- 
(b) 

Ftg. 1. Graphs to order gZ. (a) shows the exchange graphs: con- 
tinuous hnes represent gluons, crosses represent the Coulomb 
force. (b) shows the self-energy graphs. 

2.22j E~ j T7 

E + 

T2 + 

- -  - ~ E  + 2.3(3) 

-4~---T {" 2.2 (2) 

@ A~- 1,38 (8) 

Fig. 2. Splitting of the level Eo to order g2 (see eq. (4.1 ) ). The 
levels are accompanied by the relevant irreducible representa- 
tion. The results of ref. [5] are also shown. The scale is fixed by 
fitting to the measured A + . All numbers refer to masses in lattice 
spacing units, 

(b)  The threefold rotations around the (1, 1, 1 ) 
axis with eigenvalues w k (w_--exp(i2n/3),  k = 0 ,  1, 
2) serve to block diagonalize the P =  + 1 matrix into 
three 6 X 6 matrices. 

Then it is an easy matter to diagonalize the remain- 
ing 6 X 6 matrices (see fig. 2 for the result). 

Let us note that the self-energy ~ is diagonal in the 
polarization vectors of  table 1. The gluon is polarised 
along these directions. The self-energy is finite. We 
also computed the self-energy from the S-matrix us- 
ing Feynman gauge. The analytic result is the same. 
Finiteness results here, since we evaluated it on the 
mass shell (p 2 ~ E 2 _ p  2 = 0 ) and contracted with the 
polarizations, thereby full projecting out the pole part, 
which is transverse in the four-dimensional sense. 
Also the graphs in fig. la  can be computed from the 
S-matrix using Feynman gauge, giving the same re- 
sult. The S-matrix calculation is considerably sim- 
pler and becomes compulsive in higher orders. 

4.  R e s u l t s  a n d  c o n c l u s i o n s  

Our "mass"  formula is of  the form 

E[x] =Eo + (g2/127r2L )X+O(g4)  . (4.1) 

Here [X] labels the irreducible representations of  the 
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cubic group mentioned below eq. (2.9);  E0 is given 
in eq. (2.9) and the coefficients X are given in table 
2. In fig. 2 one can find the splittings compared with 
unpublished data by Stephenson and Teper [ 5 ] for a 
volume 43X 16 at f l= 2.3. 

Most of  the splitting Xis  accounted for by the split- 
ting Xe due to the exchange graphs (fig. la) .  They 
leave an accidental degeneracy in the A + - A v ,  T~  - 
Ty and E + - E  - systems (see fig. 1 ). This is lifted by 
the difference J of  the two eigenenergies o f  the gluon, 
fig. lb. This splitting is "accidentally" small because 
J is small with respect to the amplitude for a two par- 
ticle state with both spins up going into a two particle 
state with both spins down. These splittings are less 
than a percent; the Ai ~ becomes lighter than the Ai- 
and so does the T~ versus the T~- (see table 2, col- 
umn 3). The only appreciable effect of  the self-en- 
ergy is an overall shift of  - 4 . 9 4  downwards (see ta- 
ble 2). 

To fit the central value of  the measured A~- glue- 
ball we need a coupling 

g2/4zc= 0.46.  (4.2) 

For this value ofg2/47r one sees that the splittings in 
fig. 2 stay well within the limits set by the unper- 
turbed neighbour levels, i.e. Eo = 2 ~  ir /L and Eo = 0. 
So perturbation theory may still be applicable. 

The data for the T~ and E + glueballs are higher 
than our O(g 2) prediction using eq. (4.2) and table 
2. The error bars are large, though. For one thing, our 

Table 2 
Values of the variable X in eq. (4.1). X is split into two contri- 
butions: one, Xe, from exchange graphs and one, Xs, from self- 
energy graphs (fig. 1 ) (X=Xe+Xs). The overall shift is sub- 
stracted from Xs. 

calculation shows the resolution needed in the data. 
One should keep in mind that the O (g4) corrections 
to the mass formula (4.1) (which are under way 
[ 12] ) might be as large as 25%. 

Let us point out the salient differences with the 
perturbative results of  the periodic case [ 7 ]: 

(i) The (E +, T + ) states are nearly degenerate at a 
value of  mA, L -  zA, = 5.5 6, whereas in the periodic 
case this happens only at larger z-values. 

(ii) The parity minus states are nearly degenerate 
with the parity plus states. This may change to order 
g4. In the periodic case they are very different be- 
cause torons do not allow parity minus states [ 13 ]. 

The twisted ZA, variable starts out at EoL=2x/27r 
and decreases like 1 / I log A L  I. Eventually it will in- 
crease linearly in L. The periodic zA, variable starts 
out at zero and grows like 1 / I logALI 2/3. 

Let us conclude with the following recommenda-  
tions: 

(i) More than ever, we need a z variable that does 
not suffer from intrinsic volume dependence. For  a 
meaningful comparison between various boundary 
conditions and a trustworthy extrapolation for large 
L we need a z variable that does not depend on 
boundary conditions. 

(ii) The resolution of  the measurements should be 
smaller by at least a factor four to disentangle the var- 
ious levels. 

(iii) A measurement of  the electric flux energies 
E ( e =  (1, 1, 1)) a n d E ( e =  (1, 1, 0 ) )  would be quite 
interesting. We expect them to saturate quite quickly 
their asymptotic values, ~ and ~ times the string 
tension respectively. 

(iv) Finally a measurement of  the difficulty acces- 
sible parity minus states would be most welcome. 

[X] X~ Xs+4.94 

E + 32 0.06 
E- 32 0 
A + 24 0.12 
T + 16 0 
T + -8+8x/5 0.19 
T2 0 0 
T + 0 - 0.62 
E + -- 12 -0.06 
T~ - 8 - 8 ~  -0.10 
A7 -64 0 
Ai ~ -64 -0.12 
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